Hyperfeinstruktur in der ESR
Dieser Versuch beschäftigt sich mit der Messung des Intervallfaktors in der Hyperfeinstruktur des atomaren Wasserstoffs. Dieser Faktor gibt die Wechselwirkung zwischen dem ungepaarten S-Elektron und dem Kernspin wieder und führt zu einer Aufhebung der Entartung bezüglich der beiden möglichen Spineinstellungen des Elektron- und Kernspins (parallel oder anti-parallel). Die Energiedifferenz, die mit dieser Aufspaltung verbunden ist, entspricht der bekannten 21 cm-Linie (1420 MHz) des Wasserstoffs. Jedoch wird in diesem Versuch kein atomares Wasserstoffgas benutzt, sondern separierte Wasserstoffatome, die in einer gefrorenen Ammoniak-Matrix eingebettet sind. Des weiteren wird die Breit-Rabi-Formel für unseren Fall experimentell nachgewiesen.
Inhaltsverzeichnis
Vorbemerkungen
Der Versuch findet im Labor der Arbeitsgruppe I (Polarisiertes Target) im Institut für Experimentalphysik I NB 05/496-497 unter Anleitung statt.
Da die Versuchsdurchführung unkompliziert in relativ kurzer Zeit durchführbar ist und auch die häusliche Auswertung nicht sonderlich aufwendig sein wird, besteht ein Hauptaufgabenteil aus einer guten und soliden Vorbereitung der theoretischen Grundlagen zu den behandelten Phänomenen.
Zur Theorie der HFS
Ein Teilchen im äußeren Magnetfeld
Wird ein magnetisches Moment einem externen Magnetfeld ausgesetzt, so besitzt es in diesem die Energie
Geladene Elementarteilchen besitzen, sofern sie einen von Null verschiedenen Eigendrehimpuls (Spin ) haben, ein magnetisches Moment
welches in analoger Weise mit einem äußeren Magnetfeld wechselwirkt. Man definiert den g-Faktor als denjenigen Faktor, um den das magnetische Moment des Teilchens vom Wert des entsprechenden "klassischen Kreisstroms" abweicht. Letzterer wird als Magneton bezeichnet. Es sei das sogenannte Bohr'sche Magneton sowie das Kernmagneton mit der Elektronen- bzw. Protonenmasse und . Ein weiterer Unterschied zum klassischen Fall des Kreisstroms ergibt sich aus der Quantisierung des Eigendrehimpulses. Ist der Spin des Teilchens, so kann dessen Projektion bezüglich einer bestimmten Vorzugsrichtung insgesamt 2s+1 verschiedene Werte annehmen. Der Wert der (magnetische Quantenzahl) ändert sich dabei immer nur um eine Einheit. Damit schreibt sich die Energie zu
Nach den quantenmechanischen Auswahlregeln darf sich bei einem Übergang die magnetische Quantenzahl nur um eine Einheit ändern. Die bei einem Übergang aufgenommene bzw. abgegebene Energiemenge ist also
siehe hierzu Übung 1
Übungsaufgaben
Übung 1
Wie viele Energieniveaus besitzt ein freies Elektron ) und welche Übergangsfrequenz hat es in einem äußeren Magnetfeld der Stärke T?
Vorzubereitende Themen
a) klassische und quantenmechanische Beschreibung des Drehimpulses, Spin
b) magnetisches Moment, g-Faktor, Energie eines magnetischen Moments im äußeren Magnetfeld
c) atomare Fein- und Hyperfeinstruktur-Wechselwirkung
d) Zeeman-Effekt, Paschen-Back-Effekt, Breit-Rabi-Formel
e) Grundlagen eines Elektronenspin-Resonanzspektrometers
Literatur
T. Mayer-Kuckuk 'Atomphysik' T. Mayer-Kuckuk 'Kernphysik' Bergmann-Schaefer 'Experimentalphysik Bd IV Teil 1+2' Jedes einführende Lehrbuch zur Festkörperphysik bezgl. der ESR-Apparatur möglicherweise Angabe aus Biophysik-ESR-Versuch
Kontakt: Dr. Gerhard Reicherz reicherz@ep1.rub.de, Tel. 23542, NB 2/127
Anleitung: PDF